A Drosophila Homolog of Cyclase-Associated Proteins Collaborates with the Abl Tyrosine Kinase to Control Midline Axon Pathfinding

نویسندگان

  • Zachary Wills
  • Mark Emerson
  • Jannette Rusch
  • Jay Bikoff
  • Buzz Baum
  • Norbert Perrimon
  • David Van Vactor
چکیده

We demonstrate that Drosophila capulet (capt), a homolog of the adenylyl cyclase-associated protein that binds and regulates actin in yeast, associates with Abl in Drosophila cells, suggesting a functional relationship in vivo. We find a robust and specific genetic interaction between capt and Abl at the midline choice point where the growth cone repellent Slit functions to restrict axon crossing. Genetic interactions between capt and slit support a model where Capt and Abl collaborate as part of the repellent response. Further support for this model is provided by genetic interactions that both capt and Abl display with multiple members of the Roundabout receptor family. These studies identify Capulet as part of an emerging pathway linking guidance signals to regulation of cytoskeletal dynamics and suggest that the Abl pathway mediates signals downstream of multiple Roundabout receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct functional domains of the Abelson tyrosine kinase control axon guidance responses to Netrin and Slit to regulate the assembly of neural circuits.

To develop a functional nervous system, axons must initially navigate through a complex environment, directed by guidance ligands and receptors. These receptors must link to intracellular signaling cascades to direct axon pathfinding decisions. The Abelson tyrosine kinase (Abl) plays a crucial role in multiple Drosophila axon guidance pathways during development, though the mechanism by which A...

متن کامل

The Abelson tyrosine kinase, the Trio GEF and Enabled interact with the Netrin receptor Frazzled in Drosophila.

The attractive Netrin receptor Frazzled (Fra), and the signaling molecules Abelson tyrosine kinase (Abl), the guanine nucleotide-exchange factor Trio, and the Abl substrate Enabled (Ena), all regulate axon pathfinding at the Drosophila embryonic CNS midline. We detect genetic and/or physical interactions between Fra and these effector molecules that suggest that they act in concert to guide axo...

متن کامل

The Tyrosine Kinase Abl and Its Substrate Enabled Collaborate with the Receptor Phosphatase Dlar to Control Motor Axon Guidance

Genetic analysis of growth cone guidance choice points in Drosophila identified neuronal receptor protein tyrosine phosphatases (RPTPs) as key determinants of axon pathfinding behavior. We now demonstrate that the Drosophila Abl tyrosine kinase functions in the intersegmental nerve b (ISNb) motor choice point pathway as an antagonist of the RPTP Dlar. The function of Abl in this pathway is depe...

متن کامل

Interactions between the secreted protein Amalgam, its transmembrane receptor Neurotactin and the Abelson tyrosine kinase affect axon pathfinding.

Two novel dosage-sensitive modifiers of the Abelson tyrosine kinase (Abl) mutant phenotype have been identified. Amalgam (Ama) is a secreted protein that interacts with the transmembrane protein Neurotactin (Nrt) to promote cell:cell adhesion. We have identified an unusual missense ama allele, ama(M109), which dominantly enhances the Abl mutant phenotype, affecting axon pathfinding. Heterozygou...

متن کامل

Long disordered regions of the C-terminal domain of Abelson tyrosine kinase have specific and additive functions in regulation and axon localization

Abelson tyrosine kinase (Abl) is a key regulator of actin-related morphogenetic processes including axon guidance, where it functions downstream of several guidance receptors. While the long C-terminal domain (CTD) of Abl is required for function, its role is poorly understood. Here, a battery of mutants of Drosophila Abl was created that systematically deleted large segments of the CTD from Ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2002